Indefinite Integrals Practice Problems

Problem: Indefinite Integrals #1

Evaluate:

\Large{\int(2x^2+3x-1)dx}

Step 1:

 

We can first apply the integration to each term as follows:

 

\large{\int(2x^2+3x-1)dx = \int(2x^2)dx + \int(3x)dx – \int(1)dx}

 

Step 2:

 

Now, we can use the integral power rule to evaluate each integral individually, as shown:

 

\large{\int(2x^2)dx = \frac{2}{3}x^3}

 

\large{\int(3x)dx = \frac{3}{2}x^2}

 

\large{\int(1)dx = x}

 

Step 3:

 

Now, combining everything, we have:

 

\large{\int(2x^2+3x-1)dx = \frac{2}{3}x^3 + \frac{3}{2}x^2 – x + C}

 

Solution Complete!

Step 1:

We can first apply the integration to each term as follows:


\large{\int(2x^2+3x-1)dx}


\small{ = \int(2x^2)dx + \int(3x)dx – \int(1)dx}


Step 2:


Now, we can use the integral power rule to evaluate each integral individually, as shown:


\large{\int(2x^2)dx = \frac{2}{3}x^3}


\large{\int(3x)dx = \frac{3}{2}x^2}


\large{\int(1)dx = x}


Step 3:


Now, combining everything, we have:


\large{\int(2x^2+3x-1)dx}


\large{ = \frac{2}{3}x^3 + \frac{3}{2}x^2 – x + C}


Solution Complete!

Problem: Indefinite Integrals #2

Evaluate:

\Large{\int(3x^4-x^3+2x^{\frac{1}{3}}-x^{-2})dx}

Step 1:


We can first apply the integration to each term as follows:


\large{\int(3x^4-x^3+2x^{\frac{1}{3}}-x^{-2})dx}


\small{ = \int(3x^4)dx\: – \:\int(x^3)dx + \int(2x^{\frac{1}{3}})dx\: -\: \int(x^{-2})dx}


Step 2:


Now, we can use the integral power rule to evaluate each integral individually, as shown:


Solution Locked! Click to View!

Problem: Indefinite Integrals #3

Evaluate:

\Large{\int(e^t + sin(t) - 1)dt}

Problem: Indefinite Integrals #4

Given:

\Large{h'(x) = 3x^4 - 2x^3 -15x^2+ 3x - 1}

Find h(x)

Problem: Indefinite Integrals #5

Given:

\Large{f'(z) = 5z^{-3} + 2z^2 +\frac{4}{z^3} - 5}

Find f(z)

Need Additional Help? Chat with a tutor now!

QUESTIONS?

If you have any questions about our services or have any feedback, do not hesitate to get in touch with us!

Facebook
Instagram
Tiktok