Definite Integrals Practice Problems
Problem: Definite Integrals #1
Evaluate:
\Large{\int_{0}^{2}(3x^2-2x+1)dx}
Step 1:
Using our knowledge of the integral power rule, we can find the integral as follows:
\large{\int_{0}^{2}(3x^2-2x+1) dx = (x^3-x^2+x)|_{0}^{2}}
Step 2:
Now, we can apply the fundamental theorem of calculus. This states that:
\large{\int_{a}^{b}f(x) dx = F(b) – F(a)}
Thus, we have:
\large{\int_{0}^{2}(3x^2-2x+1) dx = [(2)^3 – (2)^2 + 2] – [(0)^3-(0)^2+0 ] }
\large{ = 6 \:-\: 0 = 6}
Step 3:
So, our final answer is:
\large{\int_{0}^{2}(3x^2-2x+1)dx = 6}
Solution Complete!
Step 1:
Using our knowledge of the integral power rule, we can find the integral as follows:
\large{\int_{0}^{2}(3x^2-2x+1) dx =}
\large{ (x^3-x^2+x)|_{0}^{2}}
Step 2:
Now, we can apply the fundamental theorem of calculus. This states that:
\large{\int_{a}^{b}f(x) dx = F(b) – F(a)}
Thus, we have:
\large{\int_{0}^{2}(3x^2-2x+1) dx =}
\large{ [(2)^3 – (2)^2 + 2] – [(0)^3-(0)^2+0 ] }
\large{ = 6 \:-\: 0 = 6}
Step 3:
So, our final answer is:
\large{\int_{0}^{2}(3x^2-2x+1)dx = 6}
Solution Complete!
Problem: Definite Integrals #2
Evaluate:
\Large{\int_{0}^{\frac{\pi}{2}}sin(x)dx}
\Large{\int_{0}^{\frac{\pi}{2}}sin(x)dx}
Problem: Definite Integrals #3
Evaluate:
\Large{\int_{1}^{3}(cos(x) + \frac{2}{x^4})dx}
\Large{\int_{1}^{3}(cos(x) + \frac{2}{x^4})dx}
Problem: Definite Integrals #4
Evaluate:
\Large{\int_{3}^{1}(12t^4 - 3t^3 + 4t - 3)dt}
\Large{\int_{3}^{1}(12t^4 - 3t^3 + 4t - 3)dt}
Need Additional Help? Chat with a tutor now!
QUESTIONS?
If you have any questions about our services or have any feedback, do not hesitate to get in touch with us!